

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University

Kuniamuthur, Coimbatore - 641008

17.4.4 SUSTAINABILITY LITERACY

SS

Sustainability literacy refers to the knowledge, skills, and attitudes necessary to understand and address environmental, social, and economic challenges in a sustainable way. It involves being aware of the interconnectedness of systems and how human actions impact the planet, society, and future generations. A sustainability-literate individual understands concepts such as climate change, resource management, and equity, and is empowered to make informed decisions that promote sustainable practices in daily life, work, and policy. This literacy is essential for fostering responsible citizenship and creating solutions to global sustainability issues.

Indicator 17.4.4, part of the United Nations Sustainable Development Goals (SDGs), focuses on the promotion of effective, inclusive, and transparent public-private partnerships to support sustainable development. Specifically, it measures the extent to which countries are enhancing the mobilization of domestic resources and improving access to finance through such partnerships.

In this context, sustainability literacy becomes crucial as it equips stakeholders—whether government officials, private sector leaders, or civil society groups—with the knowledge and skills needed to foster collaborations that prioritize long-term sustainability goals. Sustainability literacy helps stakeholders understand how to integrate environmental, social, and economic factors into decision-making, ensuring that public-private partnerships are not only effective in terms of economic development but also socially inclusive and environmentally responsible. For Indicator 17.4.4, this means fostering an understanding of how to manage resources responsibly and how financial mechanisms can be aligned with sustainability principles.

Here are some components of sustainability literacy as it relates to this indicator:

1. **Understanding of Key Issues:** Awareness of global challenges such as climate change, biodiversity loss, resource scarcity, inequality, and pollution.
2. **Systems Thinking:** Recognizing the interconnectedness of environmental, social, and economic systems, and understanding how actions in one area impact others.
3. **Critical Thinking and Problem Solving:** Ability to assess complex problems, evaluate solutions, and consider long-term impacts.

4. **Ethical and Responsible Decision-Making:** Making choices that prioritize the well-being of the planet and future generations.
5. **Engagement and Action:** Motivation to participate in initiatives that promote sustainability at individual, community, and global levels.

Sustainability literacy is increasingly seen as a critical part of education at all levels. Many universities, institutions, and organizations are implementing programs to improve sustainability literacy, aiming to empower people to contribute effectively to sustainable development and meet the broader goals of the SDGs.

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A++ Grade

Kuniamuthur, Coimbatore – 641008

Phone : (0422)-2678001 (7 Lines) | Email : info@skcet.ac.in | Website : www.skcet.ac.in

DESIGN AND FABRICATION OF HELIOMOVER

A MINI PROJECT REPORT

Submitted by

RIJU VIJAY	(727722EUMT087)
SANS BATSHA S	(727722EUMT097)
VENKATESH R	(727722EUMT124)
VISHNU DEV K S	(727722EUMT130)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

IN

MECHATRONICS ENGINEERING

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University

|Accredited by NAAC with A++ Grade

Kuniamuthur, Coimbatore – 641008.

NOVEMBER 2024

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A++ Grade
Kuniamuthur, Coimbatore – 641008

Phone : (0422)-2678001 (7 Lines) | Email : info@skcet.ac.in | Website : www.skcet.ac.in

SUSTAINABLE DEVELOPMENT GOALS

The Sustainable Development Goals are a collection of 17 global goals designed to blue print to achieve a better and more sustainable future for all. The SDGs, set in 2015 by the United Nations General Assembly and intended to be achieved by the year 2030, In 2015, 195 nations agreed as a blue print that they can change the world for the better. The project is based on one of the 17 goals.

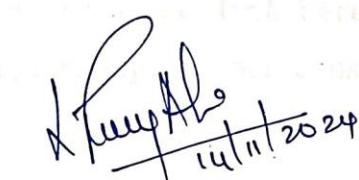
Questions	Answer
Which SDGs does the project directly address?	SDG 9: Industry, Innovation, and Infrastructure SDG 11: Sustainable Cities and Communities
What strategies or actions are being implemented to achieve these goals?	SDG 7 - Investing in renewable energy technologies SDG 13- Setting Carbon reduction targets
How is progress measured and reported in relation to the SDGs?	Ridership Growth, Reduction in Operational Costs
How were these goals identified as relevant to the project's objectives?	The project's objectives, focused on improving the efficiency and functionality of solar panels, were aligned with the SDGs during the planning phase.
Are there any partnerships or collaborations in place to enhance this impact?	No, there is no partnership

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A++ Grade

Kuniamuthur, Coimbatore – 641008

Phone : (0422)-2678001 (7 Lines) | Email : info@skcet.ac.in | Website : www.skcet.ac.in


BONAFIDE CERTIFICATE

Certified that this Industrial project report "**DESIGN AND FABRICATION OF HELIOMOVER**" is the bonafide work of "**RIJU VIJAY (727722EUMT087), SANS BATSHA S (727722EUMT097), VENKATESH R (727722EUMT124) , VISHNU DEV K S (727722EUMT130)**" who carried out the project work under my supervision.

SIGNATURE
Dr. M. LYDIA

HEAD OF THE DEPARTMENT,

Department of
Mechatronics Engineering,
Sri Krishna College of Engineering
and Technology, Coimbatore -641008.

SIGNATURE
14/11/2024

Dr.L.Feroz Ali,
ASSISTANT PROFESSOR,

Department of
Mechatronics Engineering,
Sri Krishna College of Engineering
and Technology, Coimbatore -641008.

Submitted for the Project viva-voce examination held on 14.11.2024.

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

At this juncture, we take the opportunity to convey our sincere thanks and gratitude to the management of the college for providing all the facilities to us.

We wish to convey our gratitude to our college Principal, for supporting us to do our project and offering adequate duration to complete our project.

We would like to express our grateful thanks to **Dr. M. Lydia Edwin**, Head of the Department, Department of Mechatronics engineering for her encouragement and valuable guidance on this project.

We extend my gratitude to our beloved guide **Dr.L.Feroz Ali**, Assistant professor, Department of Mechatronics engineering for her constant support and immense help at all stages of the project.

Finally, I would like to thank all the members of my team for their hard work and dedication. Their support and encouragement were instrumental in the completion of this project. I would like to thank them for their valuable suggestions and contributions to this project.

Finally, I would like to thank all the members of my team for their hard work and dedication. Their support and encouragement were instrumental in the completion of this project. I would like to thank them for their valuable suggestions and contributions to this project.

In conclusion, the research work on the development of a solar tracking system is a significant contribution to the field of renewable energy. The project demonstrates the potential of solar tracking systems to improve the efficiency and reliability of solar energy systems. The research work on the development of a solar tracking system is a significant contribution to the field of renewable energy. The project demonstrates the potential of solar tracking systems to improve the efficiency and reliability of solar energy systems.

In conclusion, the research work on the development of a solar tracking system is a significant contribution to the field of renewable energy. The project demonstrates the potential of solar tracking systems to improve the efficiency and reliability of solar energy systems. The research work on the development of a solar tracking system is a significant contribution to the field of renewable energy. The project demonstrates the potential of solar tracking systems to improve the efficiency and reliability of solar energy systems.

ABSTRACT

This report presents the design and implementation of an automatic solar tracker integrated with a mobile rover, aimed at enhancing solar energy collection efficiency. Traditional solar panels, while effective, often suffer from fixed positioning that limits their ability to capture maximum sunlight throughout the day. By employing a solar tracker that dynamically adjusts the panel orientation in real-time, energy absorption can be significantly improved.

The project utilizes a microcontroller to process inputs from light sensors that detect sunlight intensity from various angles. Servo motors are employed to adjust the solar panels' tilt and rotation, ensuring optimal alignment with the sun's position as it traverses the sky. In conjunction with the solar tracker, a mobile rover is designed to relocate the tracking system based on varying environmental conditions or energy demands. The rover features a robust chassis equipped with motors for movement and a GPS module for navigation. This mobility allows the solar tracker to be repositioned as necessary, ensuring that it consistently operates in areas with the highest sunlight exposure.

One of the primary advantages of this system is its potential for off-grid applications, providing sustainable energy solutions in remote areas. The ability to move and track the sun effectively can lead to significant increases in solar energy yield, contributing to greater energy independence and sustainability.

In conclusion, the automatic solar tracker with a moving rover presents a promising advancement in solar technology. This project underscores the importance of adaptability in renewable energy systems, showcasing how combining automation and mobility can lead to enhanced performance and energy efficiency. Future developments may explore advanced tracking algorithms and alternative power sources for the rover, paving the way for even more effective solar energy solutions.

DESIGN AND FABRICATION OF AUTONOMOUS ROBOT FOR MEDI SERVING

A MINI PROJECT REPORT

Submitted by

RAGHUL Y (727723EUMT513)
SOORIYAN P (727723EUMT515)
VASANTHAKUMAR B (727723EUMT517)
VIKAS K (727723EUMT518)

In partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING
IN
MECHATRONICS ENGINEERING

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A++ Grade

Kuniamuthur, Coimbatore – 641008

Phone : (0422)-2678001 (7 Lines) | Email : info@skcet.ac.in | Website : www.skcet.ac.in

NOVEMBER 2024

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A++ Grade
Kuniamuthur, Coimbatore – 641008
Phone : (0422)-2678001 (7 Lines) | Email : info@skcet.ac.in | Website : www.skcet.ac.in

SUSTAINABLE DEVELOPMENT GOALS

The Sustainable Development Goals are a collection of 17 global goals designed to blue print to achieve a better and more sustainable future for all. The SDGs, set in 2015 by the United Nations General Assembly and intended to be achieved by the year 2030, In 2015, 195 nations agreed as a blue print that they can change the world for the better. The project is based on one of the 17 goals.

Questions	Answer Samples
Which SDGs does the project directly address?	SDG 3 –Good wealth and health being.
What strategies or actions are being implemented to achieve these goals?	Using IR Sensors and RFID Reader to automate the process.
How is progress measured and reported in relation to the SDGs?	Identifying Patients name and the obstacle detection.
How were these goals identified as relevant to the project's objectives?	Alligns with goals for Hospitals
Are there any partnerships or collaborations in place to enhance this impact?	Idea Collaboration with Department of Science and Technology, India

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY

An Autonomous Institution | Approved by AICTE | Affiliated to Anna University | Accredited by NAAC with A++ Grade
Kuniamuthur, Coimbatore – 641008
Phone : (0422)-2678001 (7 Lines) | Email : info@skcet.ac.in | Website : www.skcet.ac.in

BONAFIDE CERTIFICATE

Certified that this project report “ **DESIGN AND FABRICATION OF AUTONOMOUS ROBOT FOR MEDI SERVING** ” is the bonafide work of **“RAGHUL Y (727723EUMT513), SOORIYAN P (727723EUMT515), VASANTHA KUMAR B(727723EUMT517), VIKAS K (727723EUMT518) ”** who carried out the project work under my supervision.

SIGNATURE

Dr. M. LYDIA, M.E., Ph.D.
HEAD OF THE DEPARTMENT,
Department of Mechatronics
Engineering,
Sri Krishna College of Engineering
and Technology,
Coimbatore-641008.

SIGNATURE

Mr. M. VIGNESHWARAN, ME(Ph.D.)
Department of Mechatronics Engineering,
Sri Krishna College of Engineering and
Technology, Coimbatore -641008.

Submitted for the Project viva-voce examination held on 14.11.2024.

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

At this juncture, we take the opportunity to convey our sincere thanks and gratitude to the management of the college for providing all the facilities to us.

We wish to convey our gratitude to our college Principal, for supporting us to do our project and offering adequate duration to complete our project.

We would like to express our grateful thanks to Dr. M. Lydia M.E., Ph.D., Head of the Department, Department of Mechatronics engineering for her encouragement and valuable guidance on this project.

We extend my gratitude to our beloved guide Mr. M. Vigneshwaran ME (Ph.D.), Assistant Professor, Department of Mechatronics Engineering for her constant support and immense help at all stages of the project.

I am indebted to Arduino Software (IDE), Arduino Uno, I learned

ABSTRACT

The project demonstrates an Autonomous robot for Medicine serving, which Serves medicine to the patient room with the help of an RFID reader to deliver the medicine. The main purpose of the robot is to avoid spreading infectious diseases while serving a medicines to individual patients room.

The methodology involves the medicines being loaded into the main dispenser and then a Robot moving through the path. When it reaches its Destination using the IR sensor and the Ultrasonic sensor, the patients have an RFID tag shown in the front of the Robot to detect the Patient's name. The robot dispatches the medicines in the dispenser to the hopper, and then the Patients can get the medicines in a tray. The interfacing of the RFID Reader, IR sensor, and ultrasonic sensor to the Arduino Nano controls the 12V DC motor with L298N Motor driver and the Servo motor with PWM Servo driver.

The outcome of this Robot is to ensure the safety of the nurses to protect them from disease and then serve medicine at a proper schedule and accurate medicine delivery. This robot will improve the efficiency and the existing hospital infrastructure to improve the environment of the hospital and improve efficiency and patient care. The robot ensures that the timely delivered the medicines while navigating the hospital environment safely to operate and when an obstacle is detected it will change its path and continue its operation and continuously deliver to the medicine.

Keywords: **RFID Reader, Medicine Delivery , Arduino Nano, Ultrasonic Sensor and IR Sensor**